www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/03

Paper 3

May/June 2003

2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
Total		

1 (a) Fig. 1.1 shows a flower which is pollinated by insects.

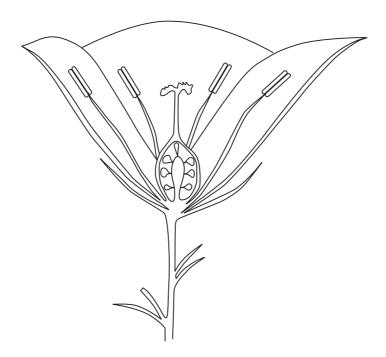


Fig. 1.1

- (i) On Fig. 1.1, draw label lines to each of the following:
 - a place where pollen grains are made, and label it M
 - a place where pollen grains are deposited, and label it **D**. [2]
- (ii) Describe two structures, visible in Fig. 1.1, which indicate that this is an insect-pollinated flower and not a wind-pollinated flower.

	2	
		١٠.
		[2.
iii)	Explain the difference between pollination and fertilisation in a flower.	
		••••

Afte see (i)	Name one example of a plant whose fruits or seeds are dispersed by anim	als.	For Examiner's Use
	Describe how the structure of these fruits or seeds helps them to be disperse this way. You may draw a labelled diagram if this helps your answer.		COM
(ii)	Outline two ways in which fruit or seed dispersal is advantageous to plants. 1	[2]	
	2	[0]	

(a) A 30 dm³ steel cylinder contained air at atmospheric pressure. 2

	*	
	4	For Examin Use
A 30	0 dm ³ steel cylinder contained air at atmospheric pressure.	Call
	other 100 dm ³ of air, which had also been at atmospheric pressure, was pump the cylinder. Atmospheric pressure is 100 000 N/m ² .	de Onide
(i)	State the total volume of air at atmospheric pressure before compression.	.6
		[1]
(ii)	Calculate the final pressure of the air inside the cylinder.	
	Show your working and state any formula that you use.	
		[2]
(iii)	When the pressure in the cylinder was actually measured it was found to $450000\text{N/m}^2.$	be
	Suggest why this value is different from the value you calculated in (ii).	
		[2]

(b) Fig. 2.1 shows a heat sensor. The plate activates the alarm when the sensor

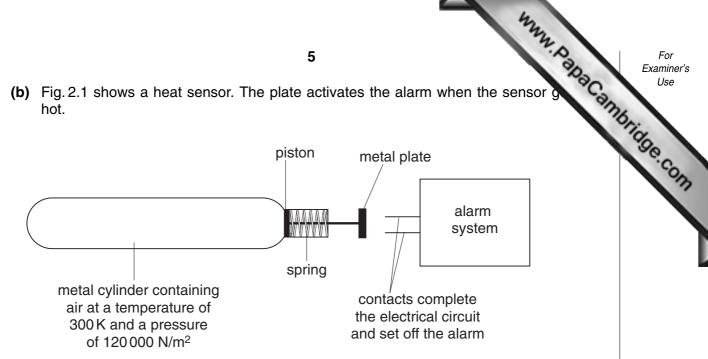


Fig. 2.1

(i)	Suggest how this sensor works.
	[3]
(ii)	The pressure in the metal tube is 120 000 N/m ² at 300 K.
	A pressure of 180 000 N/m ² is required to activate the alarm.
	Calculate the minimum temperature, in K, at which the alarm is activated.
	Show your working and state any formula that you use.

3 Fig. 3.1 shows apparatus used to record both temperature and pH during a neutral reaction between hydrochloric acid and potassium hydroxide.

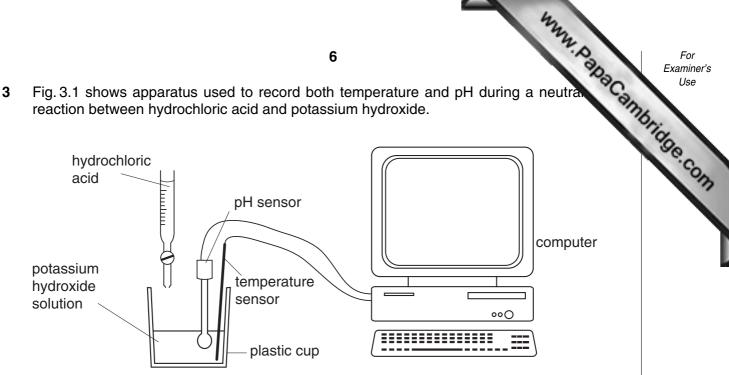


Fig. 3.1

Fig. 3.2 shows the display on the computer screen at the end of the experiment.

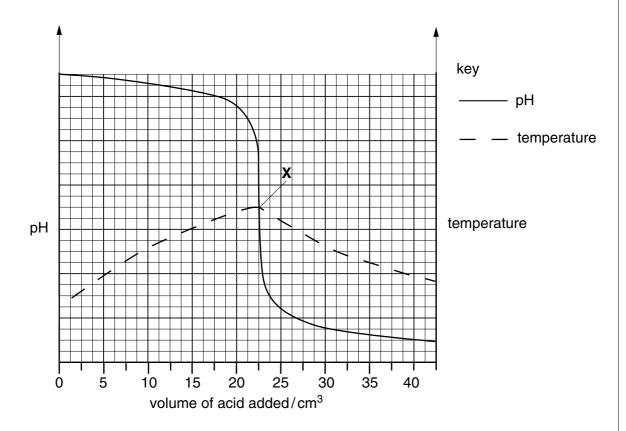
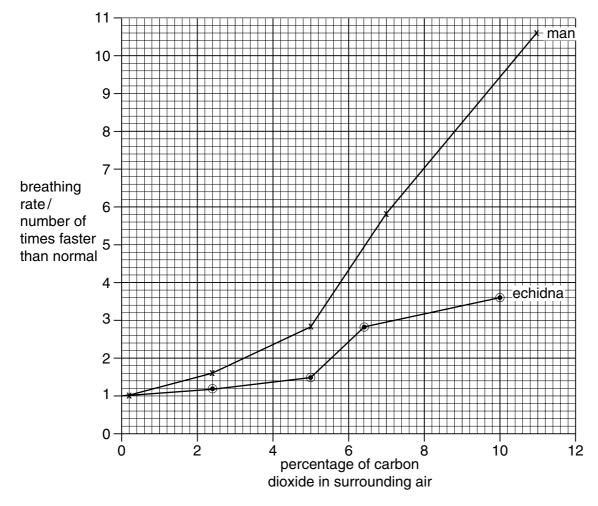


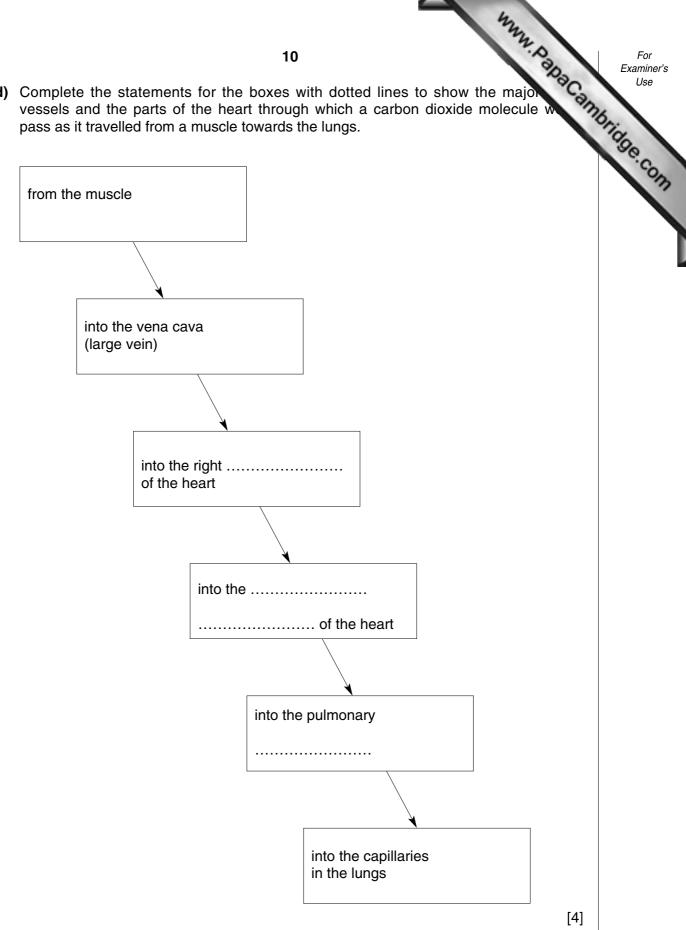
Fig. 3.2

		44
		7 A. D.
(a)	(i)	State the evidence shown on the screen that neutralisation is an exolution.
	/ii\	Prodict and explain the value of pH at the point Y
	(11)	Predict and explain the value of pH at the point X .
		[2]
	(iii)	Use the information in Fig. 3.2 to find the volume of hydrochloric acid which just
	. ,	neutralised the potassium hydroxide solution.
		[1]
(b)	(i)	Write a balanced equation for the reaction between hydrochloric acid and potassium hydroxide.
		[2]
	(ii)	State the two ions which react together in a neutralisation reaction to form water molecules.
		[2]
(c)	(i)	Calculate the mass of 0.1 mol of potassium hydroxide.
		Show your working and state the unit.
		roz
	(ii)	Calculate the mass of potassium hydroxide which must be dissolved in 0.25 dm ³
	(" <i>)</i>	of water to make a solution whose concentration is 0.1 mol/dm ³ .
		Show your working and state the unit.
		[0]


(a) (i) Complete Fig. 4.1 to show the composition of inspired and expired air.

a)	(i) Complete Fig. 4.1 to	8 show the composition of ins	spired and expired air.	For Examiner's Use
	gas	percentage in inspired air	percentage in expired air	Tage
	carbon dioxide	0.03		COM
	oxygen		18	
	nitrogen	78		

Fig. 4.1 [3] (ii) Name one other gas which is always present in unpolluted air.


(b) A 30 year old man volunteered to take part in an investigation into the effect of carbon dioxide concentration on his rate of breathing. He sat quietly in an enclosed chamber in which the composition of the air could be controlled. Each time the composition of the air was altered, the investigators waited for 5 minutes before measuring his breathing rate.

The same experiment was repeated with an echidna (a small mammal which lives in Australia) instead of the man. The results of both experiments are shown in Fig. 4.2.

		www
		9
	(i)	Suggest why the investigators waited for five minutes before measurement breathing rate in each new carbon dioxide concentration. [1]
		[4]
	(ii)	Fig. 4.2 shows that both the man and echidna breathed faster as carbon dioxide concentration increased.
		Give two ways in which the response of the echidna to increasing carbon dioxide concentration is different from the response of the man.
		1
		2
		[2]
c)	con	brain actually detects the concentration of carbon dioxide in the blood, not the centration in the air. When the concentration of carbon dioxide in the air increases, loes the concentration of carbon dioxide in the blood.
	(i)	With reference to gas exchange in the lungs, explain why the concentration of carbon dioxide in the air affects the concentration of carbon dioxide in the blood.
		[2]
	(ii)	Suggest why it is useful for the breathing rate to increase when the concentration of carbon dioxide in the blood increases.
		[2]

(d) Complete the statements for the boxes with dotted lines to show the major vessels and the parts of the heart through which a carbon dioxide molecule w pass as it travelled from a muscle towards the lungs.

(5)	Mair	by namer stations have fossil fuels to generate electricity.	Examina Use
(a)		ny power stations burn fossil fuels to generate electricity.	1
	(1)	Give two reasons why scientists and engineers are developing alternation methods of producing electricity that do not use fossil fuels.	Tide
		1	.6
		2	
		[2]	
	(ii)	Give one disadvantage of nuclear power stations compared to power stations that burn fossil fuels.	
		[1]	
	(iii)	Give one disadvantage of using wind turbines to generate electricity compared to power stations that burn fossil fuels.	
		[1]	
(b)	Trar	nsformers alter the voltage of the electricity generated at a power station.	
, ,	(i)	Explain why this is done.	
		[2]	
	(ii)	A transformer at a power station steps up the voltage from 25 000 V to 400 000 V.	
	` '	Use the equation $\frac{Vp}{Vs} = \frac{Np}{Ns}$ to calculate the ratio of turns on the primary coil to	
		turns on the secondary coil.	

www.PapaCambridge.com Ammonia is made industrially by combining nitrogen from the air with hydrogen 6 Haber process.

Fig. 6.1 shows a simplified diagram of the reaction vessel in the Haber process.

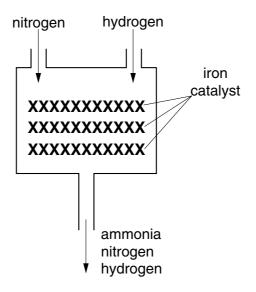


Fig. 6.1

(a) Describe a chemical test for animonia.	
(b) (i) Suggest a reason why the gas leaving the reactor in Fig. 6.1 is not pure amm	nonia.
(ii) Suggest and explain what would happen to the percentage of ammonia if the catalyst was not present.	

(c) Much ammonia is oxidised to produce nitric acid, HNO₃. Ammonia and nitric acid

For
Examiner's
11

www.PapaCambridge.com together to form ammonium nitrate which is used as a fertiliser. (i) Explain briefly, in terms of its properties, why plants are not able to use nitrogen gas directly.[1] (ii) Name **two** substances that are required to convert ammonia to nitric acid. (d) Describe how a solution of ammonia could be used to prepare crystals of ammonium sulphate. You should name the other substance required and describe the main steps in the process.

7 A farmer sprayed fertilisers containing ammonium nitrate onto a field in which young seedlings were growing.

(a)	•	lain why farmers often add nitrogen-containing fertilisers to the soil where crop growing.	วรั
			2]
(b)	(i)	Describe how the ammonium and nitrate ions would be absorbed by the whe plants.	at
			 21

(c) Some of the fertiliser was washed into a river which ran alongside the wheat field.

plant.

Fig. 7.1 shows how this affected the numbers of bacteria, algae and fish in the river, downstream from the wheat field. It also shows how it affected the oxygen concentration.

(ii) Name the tissue that would transport the ammonium and nitrate ions through the

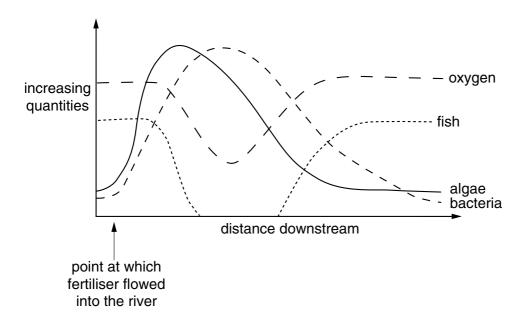


Fig. 7.1

	the state of the s	
	15	For Examiner's
(i)	Explain the shape of the curve for the numbers of algae.	Use
	Explain the shape of the curve for the numbers of algae.	Tidde
	[2]	OH
(ii)	With reference to the curves for bacteria and oxygen in Fig. 7.1, explain the shape of the curve for fish.	
	[4]	
	4	

8 (a) Fig. 8.1 shows the electrical circuit inside a device that can circulate air around a It can also be used to heat this air.

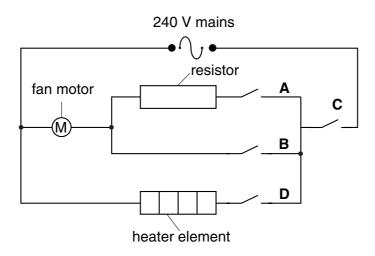


Fig. 8.1

The fan motor must be switched on to blow air.

The heater must be switched on for the air to be warmed.

When the resistor is part of the circuit, the fan motor goes more slowly.

(i) Complete the table in Fig. 8.2 to show which switches must be on to give the results shown.

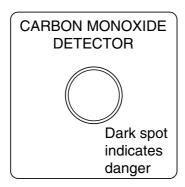
result	switch A	switch B	switch C	switch D
cold air, blown slowly	on	off	on	off
hot air, blown slowly				
cold air, blown quickly				
hot air, blown quickly				

Fig. 8.2

	<u> </u>	[3
(ii)	Explain why the fan motor goes more slowly when the resistor is part of the cir	rcuit.
		- FO

(iv) Explain why, for every coulomb of electric charge flowing through the heater element, 240 joules of heat energy are released. [1] A different heater element is used to heat a 2 kg sample of water from 20 °C to 70 °C. The specific heating capacity of water is 4200 J/kg °C. Calculate the minimum amount of energy which the heater must have supplied.		the state of the s
(iv) Explain why, for every coulomb of electric charge flowing through the heater element, 240 joules of heat energy are released. [1] A different heater element is used to heat a 2 kg sample of water from 20 °C to 70 °C. The specific heating capacity of water is 4200 J/kg °C. Calculate the minimum amount of energy which the heater must have supplied.		17 A. D.
A different heater element is used to heat a 2 kg sample of water from 20 °C to 70 °C. The specific heating capacity of water is 4200 J/kg °C. Calculate the minimum amount of energy which the heater must have supplied.		
A different heater element is used to heat a 2 kg sample of water from 20 °C to 70 °C. The specific heating capacity of water is 4200 J/kg °C. Calculate the minimum amount of energy which the heater must have supplied.		(iv) Explain why, for every coulomb of electric charge flowing through the heat
The specific heating capacity of water is 4200 J/kg°C. Calculate the minimum amount of energy which the heater must have supplied.		
Calculate the minimum amount of energy which the heater must have supplied.	,	A different heater element is used to heat a 2 kg sample of water from 20 °C to 70 °C.
	T	The specific heating capacity of water is 4200 J/kg °C.
Show your working and state any formula that you use.		Calculate the minimum amount of energy which the heater must have supplied.
	•	Show your working and state any formula that you use.
		[

A gas fire heats a room by burning methane (natural gas). 9


		the state of the s	
		18	1
A ga	as fire	e heats a room by burning methane (natural gas).	SCS.
	en the	the heats a room by burning methane (natural gas). The fire is working properly, the waste gases do not enter the room but leave through. State one natural source of methane (natural gas).	oug
(a)	(i)	State one natural source of methane (natural gas).	
	(ii)	Methane has the chemical formula $\mathrm{CH_4}$. Draw a dot and cross diagram methane molecule showing how the outer electrons are arranged.	
	(iii)	Propane is an alkane which has three carbon atoms in each of its molecules. Draw the displayed (graphical) formula of a propane molecule.	[2]
	(iv)	Complete the word equation for the complete combustion of propane. propane + oxygen → +	[2]
			[6]
			[2]

- www.PapaCambridge.com (b) Sometimes the chimney of a gas fire can become blocked, and waste containing carbon monoxide, CO, can escape into the room. Carbon monoxide colourless gas which has no odour.
 - (i) The symbolic equation for the incomplete combustion of methane is shown below. This equation is not balanced.

Balance the equation.

$$\label{eq:ch4} {\rm CH_4} \quad + \quad {\rm O_2} \, \longrightarrow \, 2{\rm CO} \quad + \quad 4{\rm H_2O}$$

(ii) Carbon monoxide detectors have a coloured spot which becomes darker when carbon monoxide is present in the air.

The coloured spot contains palladium chloride, PdCl₂.

The charge of a chloride ion is Cl^- . Deduce the charge of a palladium ion. Explain your answer.	
[2]	
) Suggest why it is advisable to place a carbon monoxide detector in a room which is heated by a gas fire.	(iii)
[2]	

www.PapaCambridge.com 10 (a) (i) A car travelling at 60 km/h has four times the kinetic energy of the sal travelling at 30 km/h.

Explain this by means of a calculation.

		[2]
	(ii)	Use your answer to (i) to explain why the speed of a car involved in an accident with a pedestrian makes such a big difference to the injuries caused.
		[2]
b)		ar of mass 1000 kg is travelling along a road. The driver applies the brakes which a constant force of 4000 N.
	(i)	Calculate the deceleration of the car.
		Show your working and state any formula that you use.
		[2]
	(ii)	The car took 32 metres to stop.
		Use the formula
		$distance = \frac{1}{2}at^2$
		to calculate the time taken to stop.

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

DATA SHEET The Periodic Table of the		Elements
	DATA SHEET	Periodic Table

						•					2						
								Grc	Group								
_	=											=	2	Λ	5	IIA	0
							-										4
							I										운
							Hydrogen 1										Helium
1		Г				_						ţ	Ç	*	9	ç	
` ;	ື											F 1	2 (4 .	۹ (ê I	0Z -
5	Be											m	ပ	z	0	ட	Se
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
	4											5	9	7	8		10
23	24											27	28	31	32		40
Na	Mg											Ρſ	S	_	တ	び	Ā
Sodium	Magnesiun	-										Aluminium	Silicon	Phosphorus	Sulphur		Argon
	12											13	14	15	16	17	18
88	40	45	48	51	52	55	56	59	59	64	65	20	73	75	62	80	84
¥	Ca	သွင	F	>	ပံ	M	Ъ	රි	Z	చె	Zu	Ga	ge	As	တီ	ፙ	궃
otassium	Calcium		Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium		Krypton
	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85	88	68	91	93	96		101		106	108	112	115	119	122	128		131
8 S	ഗ്	>	Z	g	Ø	ဥ	æ	몺	Б	Ag	පි	٦	S	Sb	<u>e</u>	Ι	×e
3ubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium		Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium		Xenon
	38	39	40	41	42	43	44	4	46	47	48	49	50	51	52		54
133	137	139	178	181	184		190		195	197	201	204	207	209			
S	Ва	Гa	Ξ	Тa	>	æ	s _O	<u></u>	₹	Ρn	Ηg	1	P ₀	Ξ	6	¥	R
Saesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum		Mercury	Thallium		Bismuth	Polonium	Astatine	Radon
	26	* 25	72	73	74	75	76	77	78	79	80	81	82	83	84	85	98
	226	227															
Ļ	Ва	Ac															
-rancium	Radium	_															
	88	+ 68															
. 	,			140	141			150		157	159	162	165	167	169	173	175
3-71 L	anthanc	3-71 Lanthanoid series		පී	ቯ	Š	Pa	Sm	Бu	<u></u>	₽ L	2	운	щ	ᆵ	₽	3
0-103	0-103 Actinoid series	d series		Cerium	Praseodymium	Neodymium	Promethium	Samarium	uropium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
				58	59	09	61	62	63	64	65	99	67	89	69	70	71
				000		900			_			_	L	L			

a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
В	×	р
	<u>></u>	

140	141	144		150	152	157	159	162	165	167	169	173	175	
రి	፵	Š	Pn	Sm	Eu	gg	P	2	운	щ	Ę	χ	3	
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
58	59	09	61	62	83	64	92	99	29	89	69	20	77	4
232		238												2
丘	Ра	>	å	Pu	Am	S	쓢	ర	ES	Fn	Md	S		1
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawr	00
06	91	95	93	94	98	96	26	86	66	100	101	102	0	1
The vc	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).	ne mole	of any ga	s is 24 dn	n³ at roon	n tempera	ature and	pressure	(r.t.p.).				Can	Can
													100	
											•	00	-	
											1	0.0	\	
											1	00		